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Abstract. We point out an omission in an often used form of the variational functional in the 
Korringa-Kohn-Rostoker method of electronic band structure calculation. This omission 
does not affect the results of Kohn and Rostoker, but leads to incorrect results for matrix 
elements calculated from the variational functional for a crystal with more than one atom 
per unit cell and muffin-tin spheres of unequal sizes. We also discuss the form of the 
momentum density and its behaviour in the vicinity of free-electron energies. 

1. Introduction 

A few years ago Mijnarends and Rabou (1986, hereafter referred to as MR) published a 
method for calculating the momentum density based on the Korringa-Kohn-Rostoker 
(KKR) method of electronic band structure calculation. The MR scheme has been applied 
to a number of solids and has proved to be a reliable way to compute momentum densities 
for Compton scattering and two-photon annihilation of thermalised positrons (e.g. 
Hanssen and Mijnarends 1986). However, when the method was implemented recently 
for use in high-TC ceramic superconductors (Bansil et af 1988; this reference of course 
presents the results based on the correct formulae for a general lattice) it was found to 
yield incorrect results for the momentum density; unphysical discontinuities appeared 
to occur in the momentum density of these materials in the vicinity of band energies 
accidentally degenerate with the free-electron energy at a specific wave vector k.  It 
became clear that the problems were caused by the unwarranted presence in the wave 
functions of factors of r:,,, where r,,, denotes the muffin-tin radius of an atom of type ,U. 

The error is somewhat subtle and may affect other calculations based on KKR theory, 
since it could be traced to the omission of factors rz from the expression for the variational 
functional A given by Kohn and Rostoker (1954, hereafter denoted by KR) and found in 
textbooks (e.g. Jones and March 1973). This functional forms the basis for conventional 
KKR theory and several later developments (Segall 1957, MR). We emphasise that the 
omission of these factors in the variational functional affects the wave functions but not 
the secular equation, and thus not the eigenvalues. For monatomic crystals discussed in 
KR these differences are of no consequence: the wave function given by KR contains a 
spurious factor r : ,  but this factor is cancelled out when the wave function is normalised. 
However, for crystals with more than one atom per unit cell in which muffin-tin spheres 
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of unequal sizes are admitted (Segalll957, MR), these factors do not cancel and erroneous 
wave functions are produced. 

The outline of this article is as follows. Section 2 discusses the KKR wave function. 
To avoid excessive formalism, the notation of KR and MR is closely followed and frequent 
reference to the equations in these papers is made. The correct formulae for the electron 
momentum density and the electron-positron momentum density are presented in 
section 3. In section 4 the behaviour of the momentum density in the vicinity of free- 
electron energies E = pz is investigated. Since the KKR theory involves functions that are 
singular at these energies, care is necessary in evaluating the momentum density. By 
expanding the relevant quantities in powers of E - p2 we show that the momentum 
density is well-behaved near E = p2 and that the formulae derived in this paper facilitate 
numerical computation also in the close vicinity of free-electron energies. A short 
discussion completes the article. 

2. Wave functions in the KKR formalism 

For notational convenience we consider a monatomic system, even though our primary 
interest is in crystals with more than one atom per unit cell. Kohn and Rostoker (1954) 
have shown that the band structure problem is equivalent to the variational principle 
6A = 0, where 

A = lim A, 
E - 0  

with (KR (3.12)) 

For a system of spherically symmetric non-overlapping muffin-tin potentials of radius 
Ti, the functional A, can be evaluated by expanding the Green function G(r ,  r ’ )  and the 
wave function q ( r )  in the form (KR (3.13) and (3.7)) 

and? 

Here K = El/’, the composite index L stands for ( I ,  m) ,  the A L L ,  are the familiar KKR 
structure functions (KR (A2.5)), the &denote regular solutions of the radial Schrodinger 

t The use of i‘ in the wave function allows the use of real spherical harmonics, but otherwise is of no 
consequence. 
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equation, and the other quantities have their conventional meaning. If the expansions 
(2) and (3) are substituted into (1) and the limit E +  0 is taken, one readily finds 

X ( R I 8 j / ,  - R:,j/,)r:CL,. (4) 
The right-hand side of (4) differs from the equivalent expression in KR (3.15) in the 
presence of two factors rf which stem from the two surface integrations in (1). 

The Wronskians in (4) can be evaluated in terms of the phase shifts ql by using the 
relations 

Ri j r  - Rljj' = (tan ~ / ) / K Y :  

R ; n l  - R p ;  = l/Kr?. 
( 5 )  

( 6 )  
Equations (5) and (6) implicitly require that the wave functions are normalised such that 
RI = j r ( K r )  - (tan ql)nl(Kr) for r > r,; equation (4) on the other hand is valid for any 
normalisation of RI. By inserting (5) and (6) into (4) and introducing new coefficients 
CL according to ((Cf KR (3.21), MR (8), MR (10)) 

CL = (CL/$)(Ri j /  - R'jj')-' ( 7 )  
or 

equation (4) may be written as 

where the elements of the matrix M are defined by the expression between large brackets 
on the right-hand side of (4). 

Application of the variational principle to (9) leads to the system of homogeneous 
equations (KR (3.21), MR (7)) 

which may be solved by searching for the zeros of the determinant of M. Normalisation 
of the wave function belonging to eigenvalue Ei can be obtained in terms of the energy 
derivative of the functional A (Hubbard and Mijnarends 1972) 

whence, with (9), 

Here N is the number of unit cells per unit volume, t the volume of the unit cell, and 
M denotes the energy derivative of M evaluated at E = E,. As shown by MR, equations 
(3), (8), (10) and (12) provide a method for calculating normalised Bloch functions in 
the K K R  formalism. 
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The foregoing discussion is straightforwardly generalised to treat crystals with a basis 
following Segall (1957) or MR. A calculation of the Bloch wave function with the aid of 
equations similar to (3), (S), (10) and (12) then yields (MR (21)) 

Here k, = k + K , ,  where K ,  is a reciprocal lattice vector, and SL, are Fourier transforms 
of R,, as defined in MR. The normalisation according to equation (12) now takes the form 

where p and I, label the atoms of the basis. Equations (7), (8), (12) and (13) differ from 
previously published equations (e.g. KR (3.21), MR (16), MR (21)) by factors of squares 
of muffin-tin radii. In monatomic crystals, or in the special case of a polyatomic crystal 
with muffin-tin spheres of equal radii, these factors have no influence on the normalised 
KKR wave functions and hence on the physical properties. This, however, is not true for 
crystals with a basis and muffin-tin spheres of unequal sizes. 

3. Momentum density in a crystal with a basis 

In the independent particle approximation, the electron momentum density p(p) is given 
by 

p ( p )  =constant x f ( E j ) I  /exp(- ip-r)yx. j ( r )dr12 (14) 
J 

where k is the reduced wave vector corresponding to the momentump, the summation 
extends over all eigenvalues E, belonging to k ,  andf(E) is the Fermi-Dirac occupation 
function. Following MR, the use of the KKR wave function derived above can be shown 
to lead to the expression 

Here b, denotes the position of the pth atom in the unit cell. Expression (15) differs 
from the corresponding equation (MR (22)) in that the latter contains factors of squares 
of muffin-tin radii under the summation sign in the numerator as well as the 
denominatort. The formula for the electron-positron momentum density pz,(p), rel- 

t That the normalisation of the wave functions is treated properly in (15) can be shown independently by 
following the Green function approach described by Mijnarends and Bansil (1976), where an explicit reference 
to wave functions is not required. 
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evant for two-photon annihilation, is similarly shown to be 

X (E cT,(k) hkEtcL,v(k) 2 ( k + ) d ~ ~ c ~ , r ( k + ) ) - *  1 
pv LL' ar AA' E = E ,  

(16) 
where all positron-related quantities have been given the superscript + andf+ represents 
the Maxwell-Boltzmann distribution for the low-density positron state. 

4. The form of the momentum density near free-electron poles 

For a given k ,  in a perfect crystal, the momentum density is non-zero only forp  = k, = 
k + K, .  Expressions (15) and (16) for the momentum density need to be evaluated only 
at the actual band energies E,, and thus, excepting accidental degeneracies, the free- 
electron energies do not actually occur in the calculations. 

At the free-electron energies E = k i  = ( k  + K,I2 the KKR structure functions A L L , ,  

and hence the matrix elements M L L , ,  are singular. Therefore, if for a given momentum 
p = ko k + KO, say, one of the eigenvalues E is at or near the free-electron energy 
Eo = k i  = Ik + & , I 2 ,  then it is sensible to expand the numerator and denominator in 
expression (15) into powers of E - k;. To this end, consider the structure function 
A E ,  in a crystal with a basis (Segall 1957) 

AyL, = -it-/' (4..12 2 i ~ ( k n r ) i ~ ' ( k n r ' )  exp[ikn * ( b p  - bv)1 
t n j / ( ~ r ) j / , ( ~ r ' )  E - k i  

Using (17), the matrix M is split as 

where M is the regular part of M. Multiplying (18) by cy, on the left and by CL." on the 
right, and summing over the indices, one finds, using (10) 
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with all quantities implicitly evaluated at the eigenvalues E = Ej. It is useful to rearrange 
(19) in the form 

The numerator in (15) can be expanded by invoking the following relations for the 
functions SL, (MR equations (15), (Al) and (A2)) 

with 

F/ , (k ,  E )  = cot q/ ,  j/(kr)R/,(r, E)r2 dr .  

This together with (20) yields 

x ( F $ ( k , ,  E )  + F,,,,(k,, E ) )  + higher order terms. 

By using (18) the denominator in (15) can be similarly expanded as 

Using (20), and taking into account the extra factor ( E  - ka)' in the denominator of 
(15), it is clear that all three terms inside the large square brackets contribute to the 
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lowest order term, which is proportional to E - k ; :  

j,,(~r))] + higher order terms. (25) 
1 d  

J,(KY) + -- 
j / ,  (KY) d E 

Equations (23) and (25) show explicitly that the numerator as well as the denominator 
of (15) go to zero linearly in E - k ; ;  hence, their quotient is smooth and well behaved 
near free-electron singularities. A suitable formula for the momentum density may now 
be obtained by the substitution of (23) and (25) into (15); we avoid writing it out in detail 
in the interest of brevity. The preceding discussion is straightforwardly generalised to 
investigate the behaviour of the electron-positron momentum density (16) near the free- 
electron poles. 

5. Discussion 

The question of numerical implementation of the momentum density formulae pre- 
sented in this article deserves further comment. Strictly speaking, one should cut out an 
energy window in the vicinity of the free-electron energies and use well-behaved 
formulae in this region. Our experience, however, has been that if the SL, functions are 
programmed in the form (21)-(22) which explicitly displays the correct behaviour near 
E = k i ,  and double precision (i.e. 64-bit) arithmetic is used consistently, satisfactory 
results can be obtained, excepting accidental degeneracies. 

In summary, we have pointed out an omission in an often published form of the 
variational functional in the KKR method of band structure computation. This omission 
is of no physical consequence, except in crystals with more than one atom per unit cell 
in which muffin-tin spheres of unequal sizes are used, where it leads to incorrect wave 
functions. 
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